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a b s t r a c t

A series of novel fimbrolide disulfanes is synthesized and a crystal structure analysis reveals interesting
inter-molecular halogen-bonding and C@O� � �C@O (carbonyl–carbonyl) dipolar interactions. Molecular
modelling studies with the target protein display significant halogen-bonding interactions in the ligand
-binding site.

� 2010 Elsevier Ltd. All rights reserved.
Fimbrolides 1 are halogenated natural products isolated from the
marine red algae species Delisea, and are known for their potent antimi-
crobial activities.1,2 The antimicrobial activity of the fimbrolides is re-
lated to their ability to inhibit bacterial quorum sensing (QS).
Fimbrolides override the action of the structurally related N-acylhomo-
serine lactone (AHL) QS auto-inducers 2, by a competitive mechanism.
This disrupts QS and the expression of virulence factors, without exert-
ing selective pressure on bacteria leading to resistance.3–5
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Fimbrolides possess two useful functional groups, bromine in the
form of a bromomethylene group and a lactone carbonyl group.

Both these groups are known for their capacity to participate in
dipolar interactions, which can play important roles in molecular
recognition processes. We have previously reported the synthesis
of fimbrolide analogues for potential antimicrobial applications.6,7

As part of our continuing interest in fimbrolides and their deriva-
tives, we targeted sulfur-based dimeric fimbrolides as an interesting
scaffold for further biological investigations. We report herein the
ll rights reserved.
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.

synthesis of novel fimbrolide disulfanes and analyses of their inter-
molecular interactions.

The fimbrolides 38 were brominated under Wohl–Ziegler condi-
tions using N-bromosuccinimide (NBS) to give the desired fimbro-
lides 4 in excellent yields. The thioester functionality was
introduced by nucleophilic substitution with potassium thioace-
tate in acetone at 25 �C to furnish S-acetyl fimbrolides 5, which
on treatment with 0.3 M methanolic hydrochloric acid (HCl) gave
the thiol-containing fimbrolides 6.9 Treatment of 6 with tert-butyl
nitrite afforded the novel dimeric fimbrolide 710 linked via a
disulfide bond (Scheme 1).

All compounds were fully characterised from spectroscopic data
including NMR spectroscopy and high-resolution mass spectrome-
try. The molecular structure of compound 7c was confirmed by sin-
gle crystal X-ray analysis ( Fig. 1).11 The crystal structure of 7c
shows an equal ratio of R,R and S,S enantiomers. It appears that
the reaction produces both the meso and racemic diastereomers
but only the racemic diastereomer crystallises from solution.

Analysis of the crystal structure of 7c reveals the presence of two
different types of intermolecular attractions, halogen bond
and C@O� � �C@O (carbonyl–carbonyl) dipolar contacts (Fig. 2).12–15

One bromine atom of each bromomethylene group makes halogen
-bonding contact with the oxygen atom of the carbonyl group of
another molecule of 7c. The doubly ‘halogen-bonded’ bridged chains
run almost along the diagonal of the a–c axis (Fig. 3). The geometrical
parameters of the contacts are: distance Br� � �O = 2.90 Å, angle
C–Br� � �O = 165.5�. The lactone carbonyl groups are also involved in
C@O� � �C@O (carbonyl–carbonyl) dipolar contacts, which bridge
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Entry Product R3 R4 Yield% 

1 4a H CH3 92 

2 4b H C5H11 97 

3 4c Br C3H7 99 

4 4d Br C5H11 98 

5 5a H CH3 93 

6 5b H C5H11 91 

7 5c Br C3H7 95 

8 5d Br C5H11 92 

9 6a H CH3 45 

10 6b H C5H11 45 

11 6c Br C3H7 48 

12 6d Br C5H11 47 

13 7a H CH3 64 

14 7b H C5H11 61 

15 7c Br C3H7 63 

16 7d Br C5H11 58 

Scheme 1. Reagents and conditions: (a) NBS, benzoyl peroxide, hm, CCl4, reflux, 20 h
(92–99%); (b) KSAc, acetone, 25 �C, 1 h (91–95%); (c) 0.3 M methanolic HCl, 60 �C,
4 h (45–48%); (d) tert-butyl nitrite, CH2Cl2, 25 �C, 1 h (58–64%).

Figure 1. ORTEP view of 7c with thermal ellipsoids drawn at 30% probability level.
Disordered atoms omitted for clarity.

Figure 2. The C–Br� � �O halogen-bonded and centrosymmetrically related
C@O� � �C@O dimeric unit of 7c.

Figure 3. Halogen bonding and carbonyl–carbonyl dipolar interactions present in
the unit cell of 7c.
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the molecules almost perpendicularly to the halogen bonding direc-
tion. The two carbonyl groups make short contacts (O� � �C = 3.09 Å)
in an anti-parallel fashion (Figs. 2 and 3).
The nature of the intermolecular non-covalent attractions in-
volved in crystal packing have been increasingly recognized to play
significant roles in the solid-state conformation adopted by a mol-
ecule, as well as influencing properties such as dissolution, stability
and bioavailability of drug substances.16–18 Non-covalent interac-
tions are also seen to have significant roles in biological systems.
Apart from hydrogen bonds, halogen bonds and carbonyl–carbonyl
dipolar contacts are two examples of such non-covalent interac-
tions prevalent in biological systems. The halogen bond is typically
observed between a polarised halogen atom (a Lewis acid) and
negatively-charged oxygen, nitrogen or sulfur atom (a Lewis base).
These interactions are significant in the three-dimensional crystal
packing of DNA structures, protein secondary structures and in
protein–ligand complexes.14,19 They have also been considered to
play key roles in drug–receptor interactions and are important in
determining the activity and selectivity profiles of these drugs.20–

22 The fimbrolides are difficult to crystallise and this is the first
crystallographic report for such structures.
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The unexpected interactions observed in the crystal structure of
7c could have major implications in the binding of the fimbrolides
to the Pseudomonas aeruginosa QS receptor protein LasR. In the ab-
sence of an available crystal structure of LasR complexed with a
fimbrolide inhibitor, we used in silico molecular docking to deter-
mine the likelihood of halogen bond or dipolar interactions be-
tween the fimbrolides and the receptor. The fimbrolide
derivatives 4c and 5c were shown to dock well with the LasR pro-
tein auto-inducer binding site (LBS).23,24 Analysis of docked struc-
tures showed that the protein C@O (Tyr49) and OH (Thr77, Thr117,
Ser131) moieties were close enough (2.8–3.4 Å) to the bromine
atoms of the fimbrolides 4c and 5c, respectively, to form halogen
bonds. This suggests that halogen bonds could play a role in the
interaction between fimbrolides and the QS receptor. However,
no protein carbonyl group was close enough to the fimbrolide car-
bonyl for a dipolar interaction. The protein–inhibitor crystal struc-
ture and/or further molecular or quantum mechanical studies will
be required to understand these interactions in greater detail.
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